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Abstract. Producing stable feature rankings is critical in many areas,
such as in bioinformatics where the robustness of a list of ranked genes
is crucial to interpretation by a domain expert. In this paper, we study
Spearman’s rho as a measure of stability to training data perturbations
- not just as a heuristic, but here proving that it is the natural measure
of stability when using mean rank aggregation. We provide insights on
the properties of this stability measure, allowing a useful interpretation
of stability values - e.g. how close a stability value is to that of a purely
random feature ranking process, and concepts such as the expected value
of a stability estimator.

Keywords: Stability, Robustness, Feature Rankings, Ensembles, Spear-
man’s Rho, Mean Rank Aggregation.

1 Introduction

Feature selection is a broad topic that consists in identifying the relevant features
for future use in a predictive model or for interpretation by domain experts. The
output of a feature selection algorithm might be one of 3 types: a scoring on the
features (e.g. the coefficients of a regression model), a ranking on the features
(e.g. with any sequential forward selection) or a feature set (e.g. when using
hypothesis testing procedures). In this paper we focus on feature rankings.

Stability (or robustness) of a feature ranker (FR) is its sensitivity to small
perturbations in the training set [12]. In information retrieval, ranking systems
on search engines are expected to be robust to spam [8]. In bioinformatics, where
by nature the training samples are usually small, the removal of only one ex-
ample on the training set can cause substantially different rankings making the
feature rankings non-interpretable and not reliable for clinical use. For this rea-
son, robust FRs have become a major requirement in the field of gene selection,
biomarker identification or molecular profiling [1, 3, 7, 10, 20].

Many measures of stability have been proposed in the literature. Some mea-
sures focus on the stability of partial feature rankings or in giving more weight to
features with higher rankings [11]. In this paper, we focus on a popular measure
used to measure the stability of full feature rankings: the Spearman rank-order
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correlation coefficient, also commonly called Spearman’s ρ. The main contribu-
tions of this paper include an understanding of the properties of this measure for
useful interpretation of stability values; a proof that unstable FRs yield better
rankings than individual rankings do on average when aggregated by their mean
and an explanation of why mean rank aggregation produces more stable FRs.

The paper is structured as follows. Section 2 provides background material
to the quantification of stability of FRs. Section 3 provides a statistical inter-
pretation and derives the properties of this measure. Section 4 focuses on the
topic of mean rank aggregation and Section 5 illustrates some of our theoretical
results on mean rank aggregation.

2 Background

Let us assume there are d features in total. A ranking r can be modelled as a
vector of d distinct natural numbers taken from 1 to d (i.e. as a permutation
of the numbers from 1 to d). To quantify stability, we measure the variability of
the rankings obtained when small perturbations are applied to the dataset. In
most literature, the general procedure to evaluate the stability of a FR consists
in taking M bootstrap samples of the dataset and then to apply the FR to each
one of the M samples hence giving M rankings [9, 12].

Let us take an example: assume that we have a dataset with d = 5 features
and that we apply a FR to M = 3 bootstrap samples. Then we can represent
the output of the FR as follows:

R =

r1

r2

r3

 =

5 3 1 4 2
4 3 1 5 2
5 3 2 4 1

 M = 3 feature rankings

where ri is the ranking obtained on the ith dataset. In the first ranking r1, the
first feature is ranked 5th, the second feature is ranked 3rd and so on. We can see
that there are some variations in between the three rankings r1, r2 and r3. Even
though the 2nd feature is always ranked in the 3rd position, the other features
present some variations in their ranks. A fully stable FR would have produced
identical rankings (i.e. r1 = r2 = r3) on the different data samples. In general,
the M rankings can be represented by a matrix R as follows:

R =

 r1

...
rM

 =


r1,1 r1,2 · · · r1,d

r2,1 r2,2 · · · r2,d

...
...

. . .
...

rM,1 rM,2 · · · rM,d


where ri is the feature ranking on the ith bootstrap sample. Quantifying the
stability of a FR consists in defining a measure Φ̂ taking as an input such a
matrix R to quantify these variations. We can wonder what would be a sensible
definition for Φ̂ and which properties should a stability measure have so that the
stability values are interpretable and comparable in different contexts.



III

Let φ be a function that takes as an input two feature rankings ri and rj
and returns a similarity value between the two rankings. A common approach
to measure the stability of a FR is to define the stability as the average pairwise
similarities between all possible unique pairs of rankings in R [12], that is:

Φ̂(R) =
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

φ(ri, rj). (1)

Several proposals have been made in the literature for the similarity measure
φ. Such measures include the Kendall Tau [19], the Canberra Distance [10], the
scaled Spearman footrule [17] or the Spearman’s ρ [12, 15]. In this paper, we
focus on the use of Spearman’s ρ which is formally defined as:.

ρ(ri, rj) = 1−
6
∑d
f=1(ri,f − rj,f )2

d(d2 − 1)
. (2)

Hereafter, Φ̂ will denote the stability measure using Spearman’s ρ. In the next
section, we study the properties of this stability measure and show that Φ̂ should
be interpreted as a random variable.

3 Pairwise Spearman’s Rho as a Stability Measure

3.1 Statistical Interpretation

An important point is that Equation (1) is an estimator, based on a random
process (bootstrapping) – therefore Φ̂ is a random variable, and we can discuss
concepts such as the expectation and the convergence of that random variable.
Surprisingly, these concepts – the expectation/convergence of stability estimates
have not been considered in the literature before. We proceed below by charac-
terising this random variable for the case of Spearman’s Rho.

We can see each ranking r as a draw from a an unknown distribution and
therefore Φ̂ is an estimator of a population parameter Φ that depends on the
parameters of that distribution. Let Xf be the random variable corresponding
to the rank of the f th feature. We can therefore see f th column of R as a
realisation of Xf . The maximum likelihood estimate σ2

f of the variance of Xf

and the unbiased sample variance s2
f are by definition:

σ2
f =

( 1

M

M∑
i=1

r2
i,f

)
−

(
1

M

M∑
i=1

ri,f

)2
 and s2

f =
M

M − 1
σ2
f . (3)

We build upon this with a novel theorem, our first contribution, Theorem 1.

Theorem 1. The stability Φ̂ using Spearman’s ρ can be re-written as follows:

Φ̂(R) = 1−
1
d

∑d
f=1 s

2
f

Vr
, (4)

where Vr = d2−1
12 is a constant only depending on d.
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Proof. All proofs of theorems/corollaries are in the Supplementary Material1.

One interpretation of the stability of Φ̂, from the form of Equation (1), is the
average correlation between the rankings inR. Theorem 1 gives another interpre-
tation. In fact, we can see the value of Φ̂ as an estimator of the average variance
of Xf over the d features rescaled by a constant depending only on d. First of
all, this gives us a natural and novel multivariate extension of Spearman’s ρ for
a set of M rankings since it reduces to Spearman’s ρ for M = 2 (which has been
a topic of interest in the statistical literature [16]). When the FR is fully stable,
i.e. when all the rankings in R are identical, the sample variance of Xf will be

equal to 0 and therefore Φ̂(R) will be equal to 1. Computing the stability us-
ing Equation (4) instead of Equation (1) reduces the computational complexity
from O(M2d) to O(Md). Since s2

f is an unbiased and consistent estimator of
the true variance Var(Xf ), we can derive the result given in Corollary 1. This

corollary shows that the estimated stability Φ̂ will converge in probability to the
population stability Φ.

Corollary 1. Φ̂(R) is an unbiased and consistent estimator of:

Φ = 1−
1
d

∑d
f=1 Var(Xf )

Vr
. (5)

We can wonder what happens if we use the maximum likelihood estimate of the
variance σ2

f instead of the unbiased estimator s2
f to estimate the true variance of

Xf in Equation (4). It turns out that that quantity corresponds to the average
pairwise Spearman’s ρ between all M2 pairs of rankings (i.e. the M(M−1) pairs
we already had plus the M correlations of each ranking with itself). Let us call
that latter quantity Φ̂all. We have that:

Φ̂all(R) =
1

M2

(
M(M − 1)Φ̂(R) +

M∑
i=1

ρ(ri, ri)

)
= 1−

1
d

∑d
f=1 Var(Xf )

Vr
. (6)

The only difference between Φ̂ and Φ̂all lies in the way the true variance of Xf

is estimated. Even though the maximum likelihood estimator σ2
f is biased, it

converges to the population parameter Var(Xf ) as M goes to infinity. In other
words, whenM is large enough, these two quantities can be used interchangeably.
This will be critical in introducing the concepts discussed in Section 4.

3.2 Properties

We know from the statistical literature the Spearman’s ρ is a chance-corrected
measure of correlation and that −1 ≤ ρ ≤ 1 [2]. But we can wonder what are the
properties of the average pairwise Spearman’s ρ? In this section, we prove two
properties for Φ̂ that we argue to be useful for interpretation and comparison of
stability values in different settings.

1 Available online at
http://www.cs.man.ac.uk/˜nogueirs/files/IbPRIA2017-supplementary-material.pdf
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Theorem 2 (Bounds). Φ̂ is asymptotically bounded (M →∞) by 0 and 1.

Even though ρ can take negative values, Theorem 2 shows that the resulting
stability estimate Φ̂ is asymptotically non-negative. We expect this result since
the population parameter Φ we are estimating –Eq. (5)– is in the interval [0, 1].

Theorem 3 (Correction For Chance). The stability estimate Φ̂ is corrected
by chance which means that its expected value is constant and equal to 0 when
the FR is random (i.e. when all rankings/permutations have equal probability).

Theorem 3 shows that no matter what is the total number of features d, the
stability estimate Φ̂ of a random FR will be 0 in expectation. As pointed out by
[2], “chance-corrected measures yield values that are interpreted as a proportion
above that expected by chance alone”. We can therefore interpret the stability
estimate Φ̂ as the proportion of agreement above chance between the rankings
in R. Some popular measures of stability used in the literature do not have this
property. For instance, the stability of a random FR using the Canberra distance
[10] will systematically increase with the number of features d, which means it
cannot be used to compare the stability of ranked gene lists of different sizes.

3.3 Relationship to Other Stability Measures

Finally, we can point out that the use of Spearman’s ρ is in line with the stability
measures used for different types of feature selection outputs. Since the sample
Pearson correlation coefficient reduces to Spearman’s ρ in the cases of untied
ranks, it is strongly related to the literature that makes use of the average
pairwise sample Pearson’s correlation coefficient in the case of feature weights
[12] and in the case of feature sets [14], which suggests that the use of Spearman’s
ρ goes towards a unification of the stability literature. We can also point out that
the use of the average pairwise Pearson’s correlation has been shown to hold a
set of desirable properties and to reduce to the very popular Kuncheva’s measure
[13] in the case of feature sets [14].

4 Ensemble Feature Ranking

In the ensemble learning literature, it is known that a set of diverse regression
models can be aggregated together to form a more robust model [5]. Inspired by
that field, ensemble feature selection [15] aims at building more robust feature
selectors by using a set of unstable individual FRs and aggregating them to-
gether to increase the stability. Nevertheless, there has been no theoretical work
that guarantees that the error and the stability of a FR will be improved by
the ensemble. Moreover, some works question the use of ensembles since it has
empirically been shown not to always increase the stability [6]. We focus on the
case of mean rank aggregation. We first show that the error of the aggregated
ranking will be guaranteed to be lower than the one of an individual ranking on
average. Then, we give a theoretical argument showing why the stability of the
aggregated rank should improve as the number of ensemble members increases.
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4.1 Mean Rank Aggregation

The general procedure to build feature ranking ensembles is to take K bootstrap
samples of the data, to apply the FR to each one of the samples and then to
combine the K resulting feature rankings using a given rank aggregation tech-
nique. The reason why we denote by K the number of FRs in ensemble (and
not by M) is because we want to distinguish it from the number of bootstrap
samples M used to estimate Φ̂. In this paper, we focus on the popular mean
rank aggregation that consists in taking the mean ranking r̄ = (r̄1, ..., r̄d) of

each feature over the K rankings (i.e. r̄f = 1
K

∑K
i=1 ri,f ). For full rankings, the

mean rank aggregation has been proved to be equivalent to the Borda Count
aggregation technique [20].

4.2 The “Ambiguity” Decomposition

Let us assume there exists a true ranking r∗ = (r∗1 , ..., r
∗
d), where r∗f is the true

rank of the f th feature, and that the FR is trying to estimate that true ranking
r∗ when producing a ranking ri. One way to measure the quality of the rank of
the f th feature is to measure the squared error (SE) of ri,f compared to the true
ranking r∗f as follows: (ri,f−r∗f )2. Now, assuming we have K ranks (r1,f , .., rK,f )

for the f th feature, we can define the mean squared error (MSE) as the mean of

the squared errors of each one of the K rankings: 1
K

∑K
i=1(ri,f − r∗f )2. Similarly

to the ambiguity decomposition that exists for ensembles of regression predictors
[4], we provide an ambiguity decomposition for mean rank aggregation.

Theorem 4. The average squared error of the mean rank over the d features
can be decomposed into two positive terms as follows:

av. SE of the mean ranker︷ ︸︸ ︷
1

d

d∑
f=1

(r̄f − r∗f )2 =

av. MSE of the K rankers︷ ︸︸ ︷
1

d

d∑
f=1

(
1

K

K∑
i=1

(ri,f − r∗f )2

)
−

ambiguity term︷ ︸︸ ︷
(1− Φ̂all)Vr , (7)

where the ambiguity term is also equal to 1
d

∑d
f=1 σ

2
f and where Vr = d2−1

12 .
Therefore, the error of the ensemble ranker is guaranteed to be less or equal than
the one of the individual rankers on average.

Theorem 4 provides a decomposition of the squared error of the mean ranking r̄
into two positive terms: the average MSE of the K rankers (which is the average
of the MSE over the d features of the K rankings) and the ambiguity term,
which is a linear function of the stability estimate Φ̂all. Since these two terms
are positive, we can see that for a given MSE, having a higher ambiguity term
(which corresponds to having a less stable set of rankers) will result in a lower
average SE for the mean ranking r̄. This decomposition shows two things:

1. The mean rank r̄ is guaranteed to be closer to the true ranking than would
be an individual ranker on average.
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2. The use of Spearman’s ρ to estimate stability is a sensible choice since it can
be interpreted as the ambiguity term of this decomposition.

Naturally, this decomposition does not show that the aggregated ranker will be
more stable then the individual ranker, which is the topic of the next section.

4.3 Does Mean Rank Aggregation Always Increase Stability?

We aim at giving an explanation of why we should expect a higher stability when
performing mean rank aggregation. The mean ranking is not a permutation of
the integers 1 to d any more: since r̄f = 1

K

∑d
f=1 ri,f , the mean rank of the f th

feature can be any real number in the interval [1, d]. Similarly to Equation (5)
where the true stability Φ of a FR is a linear function of the average variance of
Xf , we can define the stability of the mean ranking r̄ as a linear function of the
average variance of mean rankings r̄f over the d features as follows:

Ψ(r̄) = 1−
1
d

∑d
f=1 Var(r̄f )

Vr
. (8)

Theorem 5 derives the stability Ψ of the mean ranking r̄ as a linear function of
the true stability Φ of the individual FR. This theorem shows that Ψ increases
with the number of FRs in the ensemble and that eventually, as we keep adding
FRs to the ensemble, the ensemble will be fully stable (as Ψ converges to 1 when
K goes to infinity). Figure 4.3 illustrates the value of Φ against the number of
FRs in the ensemble K for different values of Φ. We can see that this value
converges to 1 as K increases.

Theorem 5. Assuming the K rankings in the ensemble are independent and
identically distributed (i.i.d), the stability of the mean ranking is reduced by 1

K
compared to the stability of the individual FR:

Ψ =
K − 1

K
+
Φ

K
. (9)

Fig. 1. Stability of the mean rank aggregation against the number of ensemble members
K when the individual ranker has a stability Φ = 0.7 and Φ = 0.4.
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One could question the choice of Ψ as a stability measure for the aggregated
mean ranking. As we can see in Equation (8), Ψ is a linear function of the
variance of the mean rank of each feature. In the literature, a threshold τ is
often applied to the mean ranking to obtain a feature set. For example, we could
decide to select all the features for which the mean rank r̄f < τ and discard the
other features. Therefore, if the mean rank r̄f of each feature has a low variance
(which corresponds to a high value of Ψ), it is more likely that the same features
would be selected when small perturbations are applied to the training set, hence
producing a stable feature set.

5 Experiments

In this section, we aim at illustrating the results of Section 4. To be able to
illustrate the result of Theorem 4, we need to know the true ranking r∗. For
this reason, we generate an artificial dataset consisting of d = 20 binary features
with different degrees of dependency with the target class Y [18]. To create the
data, firstly we generate the values of Y , by taking n samples from a Bernoulli
distribution with p(y = 1) = 0.50. Then, for each feature X, we randomly choose
the parameters p(x|y) that guarantee the desired degree of dependency expressed
in terms of I(X;Y ) and we use these parameters to sample the values of X. The
mutual information I(X;Y ) population values for each features are:

[9 9.5 8.5 8 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0.1]× 10−2,

where a high mutual information translates into a high rank of the feature. We
repeat the experiment taking different sample sizes n as given in Table 1. Then,
we take M = 100 bootstrap samples of each one of these datasets and estimate
the mutual information on each bootstrap, thus getting M rankings.

Table 1. Demonstration that unstable FRs (in the sense of pairwise Spearman’s ρ)
provide a better ranking when aggregated together by their mean. The difference be-
tween the error of the mean rank and the mean error of the individual rankings is
larger for lower stability values.

n
error of the mean error of

ambiguity
Stability

mean rank r̄ the K rankers Φ̂all

30 29.5 46.0 16.5 0.505

50 36.9 49.4 12.6 0.622

500 2.91 7.77 4.85 0.854

1000 2.05 4.23 2.19 0.934

10000 0.149 0.52 0.366 0.989

We can see in Table 1 that as we increase the sample size n, the stability of
the FR increases and therefore, the ambiguity term decreases. This is expected
since the mutual information estimates become better as we increase the sample
size and thus, the ranking become more accurate. We can observe that for lower
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stability values, the improvement in terms of error (which corresponds to the
difference between the average SE of the mean ranking and the average MSE of
the M rankings and therefore to the ambiguity term) is larger; as we expected
from Theorem 4. This follows the idea that an unstable set of FRs will yield
better results once aggregated.

We now aim at illustrating the result of Section 4.3. Since we are considering
small sample sizes, we use the jackknife resampling technique (which corresponds
to a leave-one-out resampling) to get several ensembles of FRs and we estimate
the value of Ψ . Table 2 shows the evolution of the stability of the aggregated
ranking as we increase K. As expected, the estimated stability of the aggregated
mean rank Ψ̂ increases with K and converges to 1.

Table 2. The estimated stability Ψ̂ of the mean rank increases with the number of
FRs K aggregated. This illustrates the result of Theorem 5.

n K
stability of the stability of the

individual ranker Φ̂all mean ranker Ψ̂

30

2

0.505

0.738

5 0.887

10 0.931

50 0.975

500

2

0.854

0.926

5 0.971

10 0.985

50 0.997

6 Conclusions

In this work, we showed that the stability of feature rankings using Spearman’s
ρ is in fact a random variable. Therefore, when we ”calculate” stability, we are
only estimating the true stability of a FR for a specific dataset. Our work also
derives a set of properties deemed useful for interpretation and comparison of
stability estimates. To the best of our knowledge, this is the first work proposing
a statistical perspective on the stability values obtained when using Spearman’s
rho. We further provide an theoretical guarantees on the error and the true
stability of the mean rank aggregation. Future work could include the derivation
of asymptotic distribution for the stability estimate, which would allow to derive
such tools as hypothesis testing for stability values and/or confidence intervals.
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